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ABSTRACT 31 

To assess growing season conditions where ground based observations are limited or 32 

unavailable, food security and agricultural drought monitoring analysts rely on publicly 33 

available remotely sensed rainfall and vegetation greenness. There are also remotely 34 

sensed soil moisture observations from missions like the European Space Agency 35 

(ESA) Soil Moisture and Ocean Salinity (SMOS) and NASA‟s Soil Moisture Active 36 

Passive (SMAP), however these time series are still too short to conduct studies that 37 

demonstrate the utility of these data for operational applications, or to provide historical 38 

context for extreme wet or dry events.  39 

To promote the use of remotely sensed soil moisture in agricultural drought and 40 

food security monitoring, we use East Africa as a case study to evaluate the quality of a 41 

30+ year time series of merged active-passive microwave soil moisture from the ESA 42 

Climate Change Initiative (CCI-SM). Compared to the Normalized Difference Vegetation 43 

index (NDVI) and modeled soil moisture products, we found substantial spatial and 44 

temporal gaps in the early part of the CCI-SM record, with adequate data coverage 45 

beginning in 1992.  From this point forward, growing season CCI-SM anomalies were 46 

well correlated (R>0.5) with modeled, seasonal soil moisture, and in some regions, 47 

NDVI. We use correlation analysis and qualitative comparisons at seasonal time scales 48 

to show that remotely sensed soil moisture can add information to a convergence of 49 

evidence framework that traditionally relies on rainfall and NDVI in moderately 50 

vegetated regions. 51 

 52 

Key Words: Remotely sensed soil moisture, agricultural drought monitoring, food 53 

security, East Africa 54 
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1. INTRODUCTION 55 

Agricultural drought, or soil moisture deficit, reduces crop production and can 56 

impact a range of sectors – from individual households to global commodity markets. 57 

While meteorological and crop conditions are of interest to a broad audience, many 58 

places around the world lack in situ monitoring or don‟t publicly report these data. In 59 

these instances, growing season conditions can be tracked using publicly available 60 

satellite data – most often rainfall and the normalized difference vegetation index 61 

(NDVI). Modeled and remotely sensed soil moisture can also provide information, 62 

bridging the gap between rainfall deficits and vegetation response.  63 

Humanitarian organizations that provide emergency assistance before food 64 

crises arise rely almost entirely on remotely sensed rainfall and NDVI in a „convergence 65 

of evidence‟ framework (Verdin et al., 2005). This approach uses multiple sources to 66 

mitigate errors in any single product. Despite the potential benefits, inclusion of remotely 67 

sensed and modeled soil moisture into humanitarian operations has been slow due to a 68 

lack of near-real time data as well as lack of demonstrated utility.  The Soil Moisture 69 

Active Passive (SMAP) mission, launched in January 2015, is expected to provide 70 

products that are both accurate (0.04 mm/mm error) and timely (estimates produced 71 

every 10 days) enough for agricultural monitoring (Entekhabi et al., 2010). There is still 72 

a need, however to demonstrate the utility of remotely sensed soil moisture for crop 73 

monitoring applications. This is particularly challenging in regions with insufficient in situ 74 

measurements (both rainfall and soil moisture) for calibration of absolute values from 75 

remotely sensed data and models. To cope with the resulting uncertainty, analysts can 76 

use derived moisture indices that have been standardized over time (e.g. the 77 
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Standardized Precipitation Index (SPI) McKee 1993), or percentile ranks (e.g. soil 78 

moisture percentiles (Svoboda et al. 2002; Shefield and Wood 2008). A data record of 79 

at least 30 years is recommended for computing probability distributions that underpin 80 

standardized metrics. In the case of microwave soil moisture, different satellite sensors 81 

need to be merged to make a sufficiently long time record. This has motivated the 82 

European Space Agency‟s (ESA) Climate Change Initiative (CCI) to merge active and 83 

passive microwave sensors to produce a harmonized satellite derived soil moisture 84 

dataset covering 30+ years, from 1978-2013 (Liu et al., 2012; Liu et al., 2011; Wagner 85 

et al., 2012).  86 

As with all merged multi-sensor products, users of CCI soil moisture (CCI-SM) 87 

must be aware of potential shifts in data that occur as sensors change over time. Dorigo 88 

et al. (2014) evaluated CCI-SM using a global dataset of ground based stations. On 89 

average, CCI-SM was moderately correlated (R absolute values=0.46, R anomalies=0.36) with 90 

stations and had an upward trend in quality over time with the exception of 2007-2010. 91 

Jia et al. (2015) found similar results using in situ observations from China. Also in 92 

China, Yuan et al. (2015) assessed the capability of CCI-SM to detect drought events in 93 

the in situ data and modeled soil moisture record. They found that while CCI-SM 94 

matched in situ observations for <60% of the dry events, it did capture inter-annual 95 

variability commensurate with the reanalysis, especially in sparsely vegetated regions. 96 

In a study over the Tibetan Plateau, Zeng et al. (2015) found the CCI-SM was better 97 

correlated with in situ data and reanalysis than individual sensor products.  98 

While the quality of CCI-SM has not been evaluated for regions in Africa 99 

specifically, Dorigo et al. (2014)‟s global analysis mapped the spatio-temporal coverage, 100 
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and included four sites in West Africa from the AMMA network (Cappelaere et al., 101 

2009). At these sites CCI-SM was well correlated (R ~0.7) with absolute values but less 102 

so (R~0.45) when the seasonal cycle was removed. McNally et al. (2015) found 103 

statistically significant (R>0.5) correlations between CCI-SM and modeled soil moisture 104 

anomalies in West Africa and Traore et al. (2014) found good (R>0.5) correlations in 105 

Southern and Western Africa, but less so (R<0.3) in East Africa. Shukla et al. (2014) 106 

also included CCI-SM in qualitative comparison of showing how rainfall and modeled 107 

soil moisture z-scores represented an extreme drought in East Africa. 108 

The current paper extends the work of Dorigo et al. (2014) and aims to explicitly 109 

evaluate CCI-SM in East Africa to facilitate the appropriate use of remotely sensed soil 110 

moisture in agricultural drought monitoring and food security assessment. Guided by 111 

our association with the Famine Early Warning Systems Network (FEWS NET), we 112 

focus our analysis on rain-fed agricultural regions (Figure 1a and 1b). Details about the 113 

models, their inputs, CCI-SM and NDVI and our approach to analysis are in Section 2. 114 

The first part of Section 3 evaluates the spatial and temporal coverage, and the second 115 

part compares CCI-SM with modeled soil moisture and NDVI to demonstrate where and 116 

under what conditions remotely sensed microwave soil moisture, from missions like 117 

SMOS and SMAP, can benefit agricultural drought and food security monitoring. 118 

Section 4 summarizes our contributions and discusses future research directions 119 

regarding how CCI-SM, and other remotely sensed soil moisture estimates, can 120 

contribute to agricultural and food security assessment over regions where analysts 121 

typically rely on NDVI and rainfall data. 122 

 123 
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2. METHODS 124 

East Africa is characterized by grassland and woody or shrub savanna 125 

vegetation (Figure 1a). The topography ranges from flat to complex terrain (Figure 1b) 126 

and soils range from clay to sand mixes (Nachtergaele et al., 2008). The region has a 127 

multi-modal rainfall regime that is initiated by the northward migration of the Intertropical 128 

Convergence Zone (ITCZ) in the summer months (Davenport and Nicholson, 1993). 129 

Another characteristic of this region is the lack of ground-based observations for 130 

calibration and validation of remotely sensed rainfall and soil moisture.  131 

Our analysis compares two land surface models (LSMs) and two remotely 132 

sensed observational datasets (Table 1).  The different components in Table 1 are 133 

described below. 134 

2.1 LAND SURFACE MODELING FRAMEWORK 135 

To estimate soil moisture from rainfall and other meteorological inputs, we use 136 

two models that are part of the NASA Land Information System (LIS) (Kumar et al., 137 

2008). The LIS software is a framework that facilitates the use of multiple land models, 138 

parameter (e.g. vegetation) datasets, and meteorological inputs to generate ensemble 139 

estimates of energy and water states and fluxes. More information on the current 140 

capabilities of the NASA LIS can be found on the website (http://lis.gsfc.nasa.gov/). 141 

Eventually this system will provide multi-model and multi-forcing ensemble outputs for 142 

routine FEWS NET decision support.  143 

Although not a perfect model inter-comparison due to differences in model 144 

parameters, including two land surface models allows us to capture some of the 145 

uncertainty introduced by different model physics. The land surface models and 146 

http://lis.gsfc.nasa.gov/
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associated data inputs that we used for this study are described in Table 1 and the 147 

following section. 148 

2.1.1 NOAH 3.3 149 

The Noah LSM is a water and energy balance land surface model described in 150 

Chen et al. (1996), and model updates described in Wei et al. (2013). For this study we 151 

used version 3.3 at 0.1o spatial resolution. To compute energy and water balance, Noah 152 

requires input meteorological variables, vegetation (land cover) type, and soil texture 153 

(Table 1). We chose to use the Noah model for FEWS NET applications because it is 154 

widely used by the atmospheric and land modeling communities and therefore model 155 

parameters are publicly available and well tested. Noah also has features that may be 156 

useful in the future, like data assimilation algorithms, irrigation modules and coupling to 157 

the Weather Research and Forecasting Model (WRF). There are several examples of 158 

Noah being used over East Africa (e.g. Anderson et al., 2012b, a; Yilmaz et al., 2014), 159 

coupled with the WRF in Kenya (Case et al., 2014) and in a multi-model drought 160 

monitor (Mo et al., 2012).  161 

2.1.2 VIC  162 

The Variable Infiltration Capacity (VIC) model is a semi-distributed macroscale 163 

hydrologic model (Liang et al., 1994; Liang et al., 1996) that has been widely used at a 164 

global scale and has been demonstrated to accurately capture the hydrology of different 165 

regimes (Adam et al., 2006; Maurer et al., 2002; Nijssen et al., 1997; Nijssen et al., 166 

2001). It is the main model used by the Princeton Africa Drought Monitor (Sheffield et 167 

al., 2014) and is a prototype for FEWS NET seasonal hydrologic forecasting (Shukla et 168 

al., 2014). The NASA LIS instance of the VIC model is version 4.1.2, which we ran at 169 
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0.25o resolution. When run at a sub-daily time step in energy balance mode VIC 170 

requires the same suite of meteorological inputs as the Noah model. We chose the VIC 171 

model for FEWS NET applications because it is widely used by the hydrologic 172 

forecasting community in both the U.S. and Africa (Mo et al., 2012; Nijssen et al., 2014; 173 

Sheffield et al., 2014).  174 

The soil and vegetation parameters used for this study were originally developed 175 

for Princeton‟s Africa Flood and Drought Monitor (http://hydrology.princeton. 176 

edu/~nchaney/ADMML/), documented in Sheffield et al. (2014) and Chaney et al. 177 

(2014), and described in more detail below and listed in Table 1. 178 

2.1.3 VEGETATION 179 

The LIS configurations of Noah and VIC LSMs (see Table 1) use two different 180 

static, global, 1-km resolution datasets of land cover classes. VIC uses the University of 181 

Maryland (UMD) classification for the Advanced Very High Resolution Radiometer 182 

(AVHRR) observations. Noah uses the Boston University-IGBP classification based on 183 

NASA‟s Terra Moderate Resolution Imaging Spectroradiometer (MODIS) observations. 184 

Both models use different representations of satellite derived average monthly 185 

vegetation phenology: VIC uses 1-km resolution leaf area index (LAI) (Myneni et al., 186 

1997), while Noah uses  ~14km (0.144°) resolution green vegetation fraction (GVF) 187 

climatologies from the National Center for Environmental Prediction (NCEP) (Gutman 188 

and Ignatov, 1998).  189 

VIC‟s additional vegetation type parameters like specific root length, minimum 190 

stomatal resistance, architectural resistance, roughness length, and displacement 191 

length taken from Nijssen et al. (2001). Noah‟s vegetation parameters are based on a 192 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 

 

 9 

lookup table available from the National Center for Atmospheric Research (NCAR) 193 

Research Applications Laboratory (RAL) website 194 

(http://www.ral.ucar.edu/research/land/technology/lsm.php) 195 

2.1.4 SOILS  196 

For this study, the soil type maps used in LIS-Noah 3.3 were derived from 197 

0.083°(5 min) resolution global soils dataset of Reynolds et al. (2000), and available 198 

from NCAR RAL website mentioned above. LIS-Noah includes a routine to classify soil 199 

texture based on percentages of sand, silt and clay in a given grid cell and are 200 

associated with various soil parameters found in a lookup table available from the 201 

NCAR RAL website. For VIC, soil texture and bulk density were from Batjes (1997), 202 

other soil parameters from Cosby et al. (1984) were calibrated, following the method of 203 

Troy et al. (2008), against runoff fields derived by Global Runoff Data Center (GRDC) 204 

gauges in Africa, described in Shukla et al. (2014). 205 

2.1.5 PRECIPTIATION AND METEROLOGICAL INPUTS  206 

There are a variety of options for long-term rainfall datasets. Maidment (2014) 207 

provides a comprehensive summary of rainfall datasets that extend for over 30 years. 208 

This study uses the Climate Hazards Group InfraRed Precipitation with Station data, 209 

CHIRPS v2.0, a quasi-global rainfall dataset available from 1981 to present, designed 210 

for seasonal drought monitoring and trend analysis (Funk et al., 2014). This data set 211 

was developed and is updated at near-real time by the United States Geological Survey 212 

(USGS) in collaboration with the Climate Hazards Group of the Department of 213 

Geography at the University of California, Santa Barbara. CHIRPS is generated by 214 

blending together three different data sets: (1) global 0.05° precipitation climatology, (2) 215 
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time varying grids of satellite-based and climate model precipitation estimates, and (3) 216 

in situ precipitation observations. This data set has been compared to other global 217 

precipitation data sets such as the Global Precipitation Climatology Project (Huffman et 218 

al., 2009), which is in agreement over our area of interest (Figure 1) (Peterson et al., 219 

2014). For these model experiments we spatially aggregated CHIRPS using nearest-220 

neighbor interpolation, to 0.1° and 0.25° resolution for Noah and VIC, respectively. And, 221 

because energy balance calculations require atmospheric inputs at sub-daily model 222 

time steps, these data were temporally disaggregated from daily to 6-hrly (4 223 

observations per day) using NCEP‟s Climate Forecast System Reanalysis (CFSR; 224 

http://rda.ucar.edu/datasets/ds093.1/). 225 

In addition to precipitation, Noah and VIC use temperature, humidity, downward 226 

shortwave and longwave radiation, wind (zonal and meridional), and surface pressure.  227 

For these variables, we used hourly averages from the Modern Era Retrospective 228 

Analysis for Research and Applications (MERRA) dataset (Reichle et al., 2011). 229 

MERRA is available at a horizontal resolution of 2/3° longitude by 1/2° latitude and from 230 

1 January 1980 onwards. The LIS software applies a bilinear spatial interpolation 231 

algorithm to convert the forcing data to match the 0.1° or 0.25° resolution required by 232 

the Noah and VIC models, respectively.  233 

 234 

2.2 REMOTELY SENSED SOIL MOISUTURE AND VEGETATION 235 

2.2.1 ESA CCI Microwave Soil Moisture.  236 

The ESA‟s CCI monitors a suite of Essential Climate Variables (ECV), one of 237 

which is soil moisture. The CCI-SM is available from 1979-2013 at 0.25° spatial 238 

http://rda.ucar.edu/datasets/ds093.1/
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resolution and daily temporal resolution, which we aggregated to monthly and seasonal 239 

time-steps (9- and 3- month).  240 

The CCI goal is to produce a complete and consistent global soil moisture data 241 

record based on passive (radiometer) products (SMMR, SSM/I, TMI, AMSR-E, AMSR2, 242 

Windsat) and active (radar/scatterometer) products (ERS-1/2, METOP-A 1991-2013). 243 

Passive radiometers are insensitive to weather and moderate vegetation cover and can 244 

accurately distinguish between wet (cold) and dry (warm) soils. The downsides are that, 245 

for agricultural monitoring, the spatial resolution is course (30-50 KM) and none of the 246 

sensors currently included in CCI-SM use the optimal L-band for soil moisture retrievals. 247 

In contrast, active radars have a finer spatial resolution (3-25 KM) but lower soil 248 

moisture sensitivity.  249 

The complementary strengths of the passive and active products have led to 250 

development of merging algorithms. For CCI-SM, the microwave retrieved surface soil 251 

moisture data is merged from the different sensors (Dorigo et al., 2011; Liu et al., 2012; 252 

Liu et al., 2011) and the absolute soil moisture value is scaled to the 25km GLDAS-1 253 

Noah soil moisture. The CCI-SM Algorithm Theoretical Baseline Document (2013) 254 

states that in the scaling procedure the “temporal variability and trends of the original 255 

datasets are generally well preserved.” Data quality flags are provided, and were used 256 

to mask pixels with dense vegetation, no data collected, lack of merging algorithm 257 

convergence and frozen or snow covered soils. Overall, the merged active and passive 258 

products have been shown to be superior to either the passive or active alone (Liu et 259 

al., 2011).  260 

2.2.2 GIMMS NDVI 261 
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NDVI is regularly used by food security analysts at FEWS NET (Verdin et al., 262 

2005) for convergence of evidence with precipitation statistics. Comparisons between 263 

NDVI, rainfall and soil moisture allow us to evaluate the added value of soil moisture 264 

products, like CCI-SM, and its potential use in applications like FEWS NET.  265 

We use the Global Inventory Modeling and Mapping Studies (GIMMS) NDVI 266 

product, which is derived from imagery obtained from AVHRR instrument and is 267 

available from 1982 to 2013 (Pinzon et al., 2005; Pinzon and Tucker 2014; Tucker et al., 268 

2005). AVHRR NDVI has been used extensively over different regions of Africa. 269 

Nicholson et al. (1990) compared relationships between NDVI and rainfall over the 270 

Sahel and East Africa. The relationship was linear over the Sahel but log-linear in East 271 

Africa where vegetation canopy densities are higher.  272 

While the GIMMS NDVI (1982-2013) and CCI-SM‟s period of record (1978-2013) 273 

limits their utility for drought monitoring, these datasets do provide us a sufficiently long 274 

record to evaluate the potential contributions of similar near-real time products from 275 

models or satellite sensors with shorter records.  276 

 277 

2.3 ANALYSIS APPROACH 278 

Dorigo et al. (2014) explored the spatio-temporal data availability for the entire 279 

1979-2010 period of record as well as the different periods of sensor-blending at the 280 

global scale. They show an increase in observation density over time that results from 281 

more satellites and daily overpasses as well as improvements to instrument design. We 282 

conducted a similar analysis with the CCI-SM dataset using the most recent update that 283 

spans 1979-2013.  284 
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Different from other analyses, we focused on crop growing regions of East Africa 285 

where CCI-SM may be useful for food security and drought monitoring applications. We 286 

used a generalized cropping zone mask which is based on (1) the United Nations Food 287 

and Agriculture Organization (FAO) Africover (http://www.glcn.org/activities/ 288 

africover_en.jsp) landuse-landcover maps of herbaceous crop zones and (2) FEWS 289 

NET livelihood zone, and commodity and trade maps for major staples (e.g. maize) 290 

(Gideon Galu, personal communication, July 2015). This mask is also used in the crop 291 

water balance model geoWRSI (Senay and Verdin, 2002; Verdin and Klaver, 2002). 292 

Data were additionally masked to the available NDVI domain and Noah landmask 293 

(derived from MODIS) to eliminate water bodies.  294 

Next we computed z-scores for CCI-SM, the upper layers of VIC and Noah (both 295 

0-10 cm top layer depth), GIMMS NDVI, and CHIRPS rainfall, averaged over both 296 

space and time for March-September. We compared the different datasets at this scale 297 

to determine when CCI-SM data quality was sufficient for further analysis.  We then 298 

computed and mapped pairwise rank correlations of monthly (not shown) and 3-monthly 299 

(January-February-March, April-May-June, July-August-September, October-300 

November-December) (not shown), and seasonal (March-September) z-scores from 301 

1992-2013.  302 

After assessing the general patterns of agreement between the different 303 

products, we use correlation and qualitative comparisons to explore the performance of 304 

the different products at specific locations that correspond to low, medium and high 305 

correlations and low, medium and high vegetation density. Finally, to evaluate 306 

http://www.glcn.org/activities/%20africover_en.jsp
http://www.glcn.org/activities/%20africover_en.jsp
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performance during extreme growing season conditions we qualitatively compare maps 307 

of 3-monthly z-scores for a wet (2007) and dry (2009) year. 308 

3. RESULTS 309 

Similar to Dorigo et al. (2014)‟s analysis of spatial coverage (1979-2010), Figure 310 

2 shows the temporal variability of the CCI-SM‟s spatial coverage in East Africa (1979-311 

2013). We determined the fraction of spatial coverage by calculating the ratio between 312 

the number of grid cells reporting a valid value on a given day and the number of grid 313 

cells that reported valid value on the day of the maximum coverage during the entire 314 

period. The spatial coverage is <0.4 from 1979-1992, increases to >0.5 beginning in 315 

1998, and reaches maximum levels in 2007 (>0.8), where it remains, with the exception 316 

of a brief time period around 2012. 317 

Next, we mapped the temporal coverage of CCI-SM dataset for our domain 318 

during the main East Africa rainy seasons, March-April-May (MAM), July-August-319 

September (JAS), and October-November-December (OND) (Figure 3). These maps 320 

generally correspond to the time series in Figure 2. Temporal coverage (estimated as 321 

the ratio of the number of days when a valid value was reported for a given grid cell and 322 

total number of days during a season in a decade) is the lowest during 1979-1990s 323 

(<0.3), improves to 0.5 in period 1991-2000, and improves further during the recent 324 

decades. We find slightly higher coverage rates over Kenya than what appear in the 325 

global maps of Dorigo et al. (2014).  326 

While informative, it is unclear whether the fraction of data coverage impacts 327 

optimal data usability, i.e. balancing length of record with quality of data. We evaluate 328 

this by comparing average March-September z-scores of CCI-SM with CHIRPS rainfall, 329 
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GIMMS NDVI and VIC and Noah modeled soil moisture. We found unrealistically low 330 

CCI-SM values 1986 through 1991 (Figure 4a). When we remove data before 1992 the 331 

magnitude of the CCI-SM anomalies is more consistent with the other products (Figure 332 

4b). Pairwise correlations are listed in Table 2 for both 1992-2013 and 1982-2013 (in 333 

parentheses). CCI-SM is better correlated with seasonally average modeled soil 334 

moisture than rainfall or NDVI, and all correlations improved with the shorter time series 335 

(1992-present). For the remainder of the analysis we use the 1992-2013 time series.  336 

To explore spatial patterns in the relationship between seasonally averaged data, 337 

we compute pixel-wise CCI-SM correlations with Noah (Figure 5a), VIC (Figure 5b) and 338 

NDVI (Figure 5c) over East Africa cropping zones. Within this domain, CCI-SM is best 339 

correlated with modeled soil moisture and NDVI in Kenya, and the southern and eastern 340 

extent of cropping zone in Ethiopia: Noah (R~0.6-0.8), VIC (R~0.4-0.8) and NDVI 341 

(R~0.6) Correlations are lower in Western Ethiopia, Sudan, South Sudan and Uganda 342 

(R~0-0.4). We also calculate the correlations for Noah and VIC soil moisture with NDVI 343 

(Figure 5d,e), which show similarly high correlations in the same Kenya and southern 344 

Ethiopia regions, with no significant relationship over Sudan and South Sudan. Both 345 

LSMs displayed the same spatial pattern with VIC‟s correlation being slightly lower. 346 

To examine whether and how the greenness fraction influences the agreement 347 

between these datasets we looked at individual time series at three locations, shown in 348 

Figure 6a and b, Mpala Kenya (37°E, 0.3°N), Tigray, Ethiopia (39°E, 14°N) and 349 

Illubabor, Ethiopia (8.8°N, 35.46° E). 350 

Mpala, Kenya is moderately vegetated (GVF=38% vegetation cover) and here, 351 

CCI-SM is well correlated with both modeled soil moisture and NDVI (R>0.75). The 352 
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1992-2013 timeseries of seasonal averages from this location (Figure 7a) shows a 353 

consistent signal among the products. We note that NDVI at Mpala (Figure 7a) does not 354 

show a strong response to the wet event in 2007, which we will discuss later, but does 355 

show positive anomalies comparable to CCI-SM and modeled soil moisture in 1998 and 356 

2010. We also plotted the climatological monthly mean values for each variable (Figure 357 

7b), which showed that the CCI-SM and Noah soil moisture estimates were in-phase 358 

and NDVI was lagged by one month. With its earlier peak, VIC appears to respond 359 

more quickly to the start of the March-April-May rainy season than Noah or CCI-SM.  360 

The Tigray Region of Northern Ethiopia is the sparsely vegetated (GVF=15%) 361 

and here, CCI-SM is not significantly correlated with modeled soil moisture or NDVI for 362 

the 1992-2013 period (Figure 8a). The climatological monthly mean values for each 363 

variable indicate that the soil moisture estimates do not agree on the seasonal cycle 364 

and the average NDVI lags between one and two months (Figure 8b). CCI-SM agrees 365 

with modeled soil moisture 2004-2011 (Figure 8a) suggesting that low microwave 366 

satellite coverage over this region (Figure 3) may contribute to errors 1992-2003. 367 

Illubabor, Ethiopia (35.47°E, 9.5°N) has moderate to high-density vegetation 368 

(GVF=63%). Beyond this level of vegetation density CCI-SM has been flagged and 369 

masked for dense vegetation. Here, CCI-SM is correlated with Noah (R=0.67) and VIC 370 

(R=0.6), with notable disagreement in 2001 and 2002. Meanwhile NDVI does not show 371 

a relationship with either model SM or CCI-SM estimates (Figure 9a). The climatological 372 

monthly mean values indicate that CCI-SM and NDVI are in phase January through 373 

May, both lagging the models by a month (Figure 9b). 374 
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Correlations give us an indication of how time series capture a range of 375 

conditions. For drought monitoring and food security applications, however, it is 376 

important to evaluate how products represent extremes. We compare CCI-SM to Noah-377 

SM and NDVI in extreme wet (2007) and dry (2009) conditions by mapping 3-month z-378 

scores for each product (Figures 10 and 11).  379 

In 2007 all products were 1 to ~2 standard deviations above average (Figure 4b). 380 

The EM-Disaster Database (Guha-Sapir et al., 2015) indicates severe flooding in 381 

Ethiopia during July 2007. The World Food Program also reports above average rainfall 382 

in Northwest Kenya, including the Laikipia District where Mpala is located 383 

(http://documents.wfp.org/stellent/groups/public/documents/ena/wfp150278.pdf). In 384 

general, CCI-SM and Noah agree that April-May-June (AMJ) and July-August-385 

September (JAS) were wetter than average. NDVI agrees with CCI-SM and Noah 386 

during JAS, especially in Kenya and the southern extent of the domain in Ethiopia 387 

(Figure 10). The October-November-December (OND) conditions for all products show 388 

conditions returning to nearly normal or dry.  389 

In 2009, all products were between 1.5 and 2 standard deviations below average 390 

(Figure 4b). The disaster database confirms severe drought in Kenya and the FAO 391 

Statistics Division (FAO STAT: http://faostat.fao.org/) confirms significant yield losses. 392 

The spatial patterns (Figure 11) during AMJ and JAS by CCI-SM, Noah and NDVI are 393 

nearly identical - with strong deficits in central Kenya, central Sudan and north-central 394 

Ethiopia. All products indicate moisture increases in OND, however spatial patterns 395 

diverge, e.g. NDVI and CCI-SM deficits remain strong in eastern Sudan, while Noah 396 

shows near normal conditions.  397 
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4. DISCUSSION  398 

 The European Space Agency‟s CCI-SM is a long term gridded soil moisture 399 

dataset which has potential to be very valuable for long-term agricultural drought and 400 

hydrologic extreme analysis, especially in places like East Africa that suffer from a lack 401 

of in situ rainfall and soil moisture observations. In this study we comprehensively 402 

evaluated this dataset over East Africa, specifically for the purposes of agricultural 403 

drought analysis. Results in Figures 2 and 3 demonstrate the variability of the spatial 404 

and temporal coverage of this dataset in our focus domain and Figure 4a and b showed 405 

how CCI-SM compares to other independent datasets (i.e. CHIRPS rainfall, GIMMS 406 

NDVI and modeled soil moisture) that are currently being used by the FEWS NET for 407 

agricultural drought analysis and monitoring in this region. 408 

Maps of our correlation analysis (Figure 5) show where CCI-SM, modeled soil 409 

moisture and NDVI are all reliable sources of growing season conditions in e.g. Kenya 410 

and where CCI-SM can corroborate soil moisture estimates from the VIC and Noah 411 

models, but analysts should be wary of a non-linear relationship between soil moisture 412 

estimates and NDVI in moderate to highly vegetated locations e.g. Illubabor, Ethiopia 413 

(Figure 9a). We also highlight where CCI-SM, NDVI and even models driven with the 414 

same rainfall and meteorological inputs disagree e.g. Tigray, Ethiopia. This site appears 415 

to be the convergence of multiple sources of uncertainty – differences in model physics 416 

and parameters result in low correlations between the Noah and VIC models, CCI-SM 417 

climatological monthly mean appears to be shifted a month earlier than Noah and two 418 

months earlier than NDVI (Figure 9b). Targeted investigation on sources of model or 419 

observational uncertainty is needed here and in other regions, like central Sudan and 420 
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South Sudan, where our maps indicate no agreement between the different estimates 421 

(Figure 5). Despite differences when considering the 1992-2013 record, Figures 10 and 422 

11 show that there is very high and wide spread correspondence between CCI-SM and 423 

modeled soil moisture in wet and dry extreme years (2007, 2009). This contrasts with 424 

NDVI, which corresponds to CCI-SM and Noah better during the dry year (Figure 11). 425 

 While CCI-SM and potentially other microwave products, like SMAP and SMOS, 426 

show great potential for FEWS NET applications in East Africa there are some caveats 427 

to address. First, due to the relatively low spatial and temporal data coverage (and poor 428 

data quality during 1986 to 1992), we limited our period of analysis to 1992-2013. The 429 

data quality and coverage even during this time period was not always consistent. 430 

There were many more records available over the Sudan and Western Ethiopia than 431 

Somalia and southeast Ethiopia and during post-2001 than the previous periods. Future 432 

studies targeting smaller regions within East Africa might have to adopt different 433 

analysis periods (e.g. Tigray). This is also true for extensions of this work that will 434 

evaluate CCI-SM over other FEWS NET regions of interest like western, northern, and 435 

southern Africa and the Middle East. 436 

Second, in this analysis, we limit the comparison of CCI-SM dataset to only NDVI 437 

and modeled soil moisture datasets. For the purpose of drought impact analysis, 438 

however, we need to examine the correspondence between various datasets with 439 

metrics such as crop yield losses (available from FAO and national agricultural 440 

agencies), numbers of people affected and economic damages (from the EM-Dat 441 

International Disaster Database). This is a daunting task, given that the influence of 442 

non-agro-climatic factors (e.g., livelihood and market accessibility) on those metrics and 443 
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the general lack of high quality, long-term, sub-national data on crop area and 444 

production. 445 

Finally, demonstrating the relevance of remotely sensed and modeled for drought 446 

impact assessment is challenging but worthwhile task. Evaluation of remotely sensed 447 

and modeled data sets is essential to continue to make improvements for food security 448 

decision support. A challenge is finding a suite of metrics that capture the value, 449 

uncertainty, and information content of the observations while factoring in both science 450 

and societal impacts. Kumar et al. (2014) describe decision-theory based metrics that 451 

address weaknesses of conventional metrics like root mean squared error (RMSE) and 452 

anomaly correlation that may not be suited for capturing impact to hydrological 453 

applications. Ideally, these types of metrics could be used to make „expert opinion‟ more 454 

transparent – e.g. what metric would show that NDVI is a good indicator of very dry 455 

conditions, as we showed in our 2009 example? One would first need to construct an 456 

independent baseline of droughts to quantify the value of NDVI. Other studies, like Jia et 457 

al. (2015); Yuan et al. (2015) used modeled and in situ data sets for this baseline, but 458 

what would one use to simultaneously evaluate models and NDVI when in situ data is 459 

not available? 460 

5. CONCLUSIONS 461 

 Agricultural drought monitoring in data sparse regions is a challenge leaving much 462 

room for improvement but continues to reap benefits from advancements in remote 463 

sensing and modeling technologies.  Synthesizing soil moisture predictions from 464 

different sources of evidence (rainfall driven land surface models, remote sensing and 465 

NDVI) represents a best guess as to how growing season conditions are progressing 466 
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and can be used to provide early warning for natural hazards like droughts and floods, 467 

which are linked to food insecurity.  468 

Here we show that the new ESA CCI-SM soil moisture product adds information to 469 

historical drought analysis. 470 

Our primary findings are: 471 

(1) Spatial and temporal coverage of this dataset is generally poor in East Africa 472 

prior to 1992 but improves with time.  473 

(2) Post 1992 the correlation of CCI-SM dataset with other datasets improves, and 474 

its correlation, with NOAH and VIC soil moisture, is statistically significant 475 

(R>0.68). 476 

(3) Grid-cell scale comparison of CCI-SM with VIC, NOAH and NDVI indicated that 477 

CCI-SM generally has a higher level of agreement (R>0.5) over Kenya and 478 

central Ethiopia; whereas agreement over western Ethiopia and neighboring 479 

regions of Sudan and South Sudan is limited. 480 

(4) Correlation maps and specific case studies show that analysts can be confident 481 

about the indication of growing season anomalies in much of Kenya and the 482 

southern cropping extent of Ethiopia. In central Ethiopia CCI-SM can corroborate 483 

modeled soil moisture better than NDVI, and in northern and western Ethiopia 484 

analysts should be wary of all data products and consult field informants. 485 

(5) The CCI-SM and modeled soil moisture show remarkably similar anomalies 486 

during extreme wet and dry years.  487 

These efforts are important as preparation for SMAP, SMOS and future soil moisture 488 

missions. The improved accuracy of future products should improve our overall 489 
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confidence in a convergence of evidence framework and further extend this time series 490 

for better percentile-based estimates of drought. Despite the fact that CCI-SM data are 491 

not available at near real-time, these data provide important baseline, historical 492 

information, hydrologic model verification and allow food security analysts to become 493 

more familiar with the strengths and limitations of microwave soil moisture retrievals.  494 
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Table 1. Summary of Data and Models 

NASA LIS 
Land surface 
models 
(Kumar et al 
2008) 

Models & 
parameters 

Noah33 
(Chen et al. 
1996; Wei et 
al. 2013) 
modeled soil 
moisture 
(layer 1) 

Landcover: IGBP classification with 
MODIS 
 

Vegetation parameters: RAL 

Vegetation phenology: monthly 
climatology of green vegetation 
fraction 
(Gutman and Ignatov 1998) 

Soils: FAO Reynolds et al. (2000) 

VIC 4.1.2 
(Liang et al., 
1994; Liang 
et al., 1996) 
modeled soil 
moisture 
(layer 1) 
 
Parameters 
originally 
from Sheffield 
et al. (2014) 
and Chaney 
et al. (2014) 

Landcover: UMD classification with 
AVHRR  
 

Soils texture, bulk density (Batjes, 
1997), other parameters (Cosby et 
al., 1984) 

Vegetation phenology: monthly 
climatology leaf area index (LAI) 
(Myneni et al. 1997) 

Vegetation parameters: (Nijssen et 
al. 2001) 

Model 
inputs 

CHIRPS 
rainfall (Funk 
et al. 2014) 

Daily rainfall disaggregated to 6-
hourly model inputs. 

MERRA 
meteorologic
al inputs 
(Reichle et al. 
2011) 

Temperature, humidity, downward 
shortwave and longwave radiation, 
wind (zonal and meridional), and 
surface pressure 

Observations Remotely 
sensed 
data 
 
 

Vegetation 
Greenness 

GIMMS NDVI 16 day NDVI 
composites 
(Pinzon et al., 2005; Pinzon and 
Tucker 2014; Tucker et al., 2005). 

Soil moisture ESA CCI Soil moisture Daily (Liu et 
al., 2012; Liu et al., 2011; Wagner 
et al., 2012) 

 

 
 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 

 

 28 

Table 2. Spearman rank correlations associated with Figure 3. The first entry is for 
1992-2013; values in parenthesis are for 1982-2013. All relationships with CCI-SM 
improve with the shorter time series.  

1992 
(1982) 

CCI-
SM 

CHIRPSv2  
6-hrly 

NOAH VIC NDVI 

CCI-SM 1 0.56  
(0.39) 

0.68  
(0.59) 

0.70 
(0.56) 

0.58 
(0.45) 

CHIRPSv2 
 6-hrly 

 1 0.88  
(0.84) 

0.80 
(0.79) 

0.44 
(0.44) 

NOAH   1 0.90 
(0.90) 

0.40 
(0.39) 

VIC    1 0.47 
(0.41) 

NDVI     1 
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Figure 1. Landcover and Elevation. (a) East Africa dominant landcover types 
from IGBP-MODIS and (b) elevation from SRTM30 v2.1 
(http://dds.cr.usgs.gov/srtm/version2_1/SRTM30/). 
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Figure 2. CCI-SM Daily SM observation coverage over East Africa (1979-2013). 
The fractional coverage is defined as the ratio of total number of grid cells reporting 
valid soil moisture value during a given day and the maximum number of grid cells 
reporting valid soil moisture values during the entire period.  
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Figure 3. CCI-SM temporal coverage over East Africa (1979-2013).  Fraction of 
time that soil moisture observations were reported during different seasons over 
East Africa. The data coverage improved post 2001. 
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Figure 4. East Africa domain averaged z-scores. CHIRPS rainfall, Noah and VIC 

modeled soil moisture, NDVI and CCI-SM soil moisture z-scores over cropping 

region of East Africa for (A) 1981-2013 and (B) z-scores recomputed for 1992-2013. 

Associated pairwise correlations shown in Table 2.  
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Figure 5. Seasonal correlations between CCI-SM, models and NDVI. 

Pairwise Spearman rank correlation of seasonal (March-September average) 

CCI-SM and a) Noah b) VIC c) NDVI as well as d) NDVI-Noah e) NDVI - VIC. CCI-

SM tends to show better agreement with modeled soil moisture than NDVI.  
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Figure 6. Sites for detailed time series analysis. (A) Average of pairwise 

correlation of CCI-SM, Noah and NDVI. (B) NCEP green vegetation fraction. 

Locations of time series analysis in pink. 
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Figure 7. Mpala, Kenya (0.3°N, 37° E) with moderate-low vegetation (GVF=0.38). (A) 

Seasonal (March-Sept) average at the site 1992-2013. (B) Climatological monthly mean 

for each variable. 

 

 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 

 

 36 

 
Figure 8. Tigray region, Ethiopia (14°N, 39°E) with sparse vegetation (GVF=0.15). 

(A) Seasonal (March-Sept) average. Modeled and CCI-SM estimates are not 

significantly correlated (R<0.25), and no significant relationship with NDVI (B) 

Climatological monthly mean for each variable. 
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Figure 9. Illubabor, Ethiopia (8.8°N, 35.46° E) with moderately dense vegetation 

(GVF=0.63). Seasonal (March-September) average, models and microwave agree 

(R=0.63). Neither MW nor models have significant relationships with average seasonal 

NDVI. (B) Climatological monthly mean for each variable. 
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Figure 10. Z-scores for extreme wet conditions in 2007. Seasonal z-scores for CCI-

SM and Noah SM show similar spatial patterns and temporal evolution of extremely wet 

conditions in 2007. GIMMS NDVI shows a similar temporal evolution of wet conditions in 

JAS and average conditions in OND, but z-scores are less extreme.  
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Figure 11. Z-scores for extreme dry conditions in 2009. Seasonal z-scores for CCI-

SM, Noah SM and GIMMS NDVI show similar spatial patterns and temporal evolution of 

extremely dry conditions in 2009. 

 


